COPPER DEFICIENCY IN RUMINANTS IN PAKISTAN

Maryam Riaz, Ghulam Muhammad

Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, Pakistan.
*Corresponding Author Email: drmaryamriazvet@gmail.com, profdrgm54@gmail.com

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Copper (Cu) is a vital micronutrient in all living organisms. It is essential for the proper functioning of the different enzymes like ceruloplasmin, dopamine β-superoxide dismutase, cytochrome c oxidase, lysyl oxidase, superoxide dismutase, tyrosinase, epidermal growth factor, ascorbate oxidase and monoxygenase. These enzymes play a vital role in a variety of physiological functions of hematological, nervous, cardiovascular, reproductive, antioxidant and immune systems. Hypocuprosis may be due to primary or secondary copper deficiency. The main reason of copper deficiency in Pakistani livestock is mostly probably due to the presence of dietary Cu antagonist, e.g. sulphur and in particular molybdenum. Clinical symptoms of copper deficiency include ataxia, paralysis, paresis, incoordination, head tremors, edema, twisted joints, weakness of limbs, poor quality fleece, bespectacled eyes, fractures, anaemia, depigmentation of hair and skin, rough body coats, thin bellies, degeneration of myocardial muscles, ataxia, head tremors and falling disease. In Pakistan copper has been used for the treatment of different health disorders of livestock e.g. nutritional hemoglobinuria, parturient hemoglobinuria, mastitis, anestus, leukoderma, chronic diarrhea.

KEYWORDS

Copper, deficiency, enzymes, micronutrient, ruminants.

1. INTRODUCTION

Primary and secondary deficiencies of macro and trace elements are significant impediments to livestock production because of their associations with low production, reproduction and a variety of health disorders. Copper is a vital micronutrient in all living organisms ranging from plants to mammals. It is required in extremely miniscule amounts. This element plays an essential role in a variety of physiological functions of hematological, nervous, cardiovascular, reproductive and immune systems [1]. Cu plays a key role in antioxidant system of the body by virtue of its association in the enzymes Cu-Zn superoxide dismutase (SOD) and ceruloplasmin (ferroxidase). In the cytosol, Cu-Zn SOD is capable of dismutation of superoxide radicals to hydrogen peroxide [2].

Deficiency of Cu in dairy cattle is mostly due to the presence of dietary antagonist, e.g. sulphur and in particular molybdenum [3]. As a consequence of antagonism between copper and molybdenum, copper-molybdenum complex formation occurs with poor intestinal absorption of copper [4]. Some researchers reported that production and reproduction in livestock is reduced due to the deficiency of trace minerals in soil and forages [5]. Biological activity of sulphur, iron and molybdenum is increased due to the alkalinity of soils that reduces the availability of Cu [6].

There are many clinical symptoms of copper deficiency including poor quality fleece, poor reproductive performance, fractures, anaemia, myocardial degeneration, decreased immunity to infectious diseases and diarrhoea [7]. On a global level, copper deficiency is one of the most prevalent mineral deficiencies in ruminants second only to phosphorus [8]. Animals deficient in copper are very prone to infections [9]. The focus of this review article is the health problems in livestock surrounding role of copper in animal health and disease, primary and secondary copper deficiency, normal serum copper levels in dairy cows and buffaloes, copper related studies in Pakistan.

2. ROLE OF COPPER IN ANIMAL HEALTH AND DISEASE

A study stated that in the biochemistry of the living organisms, copper is a very important element [10]. It plays a vital role as a cofactor in the activity of enzymes. It work as a basic structure of metalloenzymes like tyrosinase, superoxide dismutase (SOD), cytochrome oxidase, ceruloplasmin and lysyl oxidase. So, Cu is important for cellular respiration, in function of neurotransmitter, in tissue biosynthesis and defence against free radical.

Copper is important for its role in lysyl oxidase, for the integrity of blood vessels and heart, as well as for its role in antioxidant enzymes like ceruloplasmin and Cu-Zn superoxide dismutase. Copper deficiency (hypocuprosis) plays a big role in the development of cardiovascular disease [11]. Copper deficiency has been investigated by using ceruloplasmin diagnostically in domestic animals [12].

Superoxide dismutase has two forms viz., copper-zinc form and manganese form in mammalian cells [11]. With supplementation of copper, the activity of catalase and Cu-Zn superoxide dismutase increased and with its deficiency, the activity of these enzymes decreased [13]. Cu deficiency in cattle was associated with a decrease in ceruloplasmin, Cu-Zn SOD and cytochrome oxidase activity [14].

Copper is essential for the proper growth of immune system. At cellular level, Cu performs bacterioidal activity to prevent infections [15]. Ruminants with hypocuprosis have a lower lymphocyte count than those with normal Cu levels and have decreased inflammatory responses to disease [16].
Copper is important in the development of connective tissue in cattle through lys oxidase enzyme. This enzyme is involved in the construction of inter-molecular cross linkages in elastin and collagen and thus plays an important role in strengthening the collagen and elastin. Heart problems and bone problems have been found in copper deficient animals due to less development of connective tissue. This enzyme also influences bone development in animals. It is also important in cartilage mineralization and formation of collagen in bone. So, it has a direct effect on bone development and growth. Basically, bone strength is dependent upon the cross links of collagen. Due to copper deficiency, there is a reduction in cross links of collagen. If proper Cu supplementation is performed then bone problems in livestock can be reversed [10,17].

Copper has an effect on the CNS through the enzyme cytochrome-c oxidase because it is important in the growth of the myelin sheath of nerves. So, Cu is vital in the development of CNS. Cytochrome-c activity decreased in the brain of lambs affected with hypocuprosis [17,18]. Appetite regulation in mammals is a complex biological phenomenon. Cu dependent enzymes are involved in the formation of appetite regulating hormones viz., cholecystokinin and gastrin. These enzymes are very important to maintain the balance of appetite regulating hormones which are essential to drive hunger and so important for production and performance of animals [19].

Hypocuprosis causes anemia due to less release of iron leading to less availability of iron for erythropoiesis and many other functions. Cu is necessary for the proper distribution, absorption and release of Fe throughout the body. So, less Fe is available for erythropoiesis [20]. Suttle and Jones stated that copper status also affects the hemoglobin concentration and Heinz body count [21]. In hypocuprosis, Heinz body counts were high and hemoglobin level was significantly low in animals. After copper supplementation, hemoglobin concentration increased and Heinz body counts decreased in sheep.

Table 1: summarizes the major copper dependent enzymes, their functions and clinical significance in the mammalian body.

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Biological Functions</th>
<th>Clinical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceruloplasmin</td>
<td>Fe(^{2+}), Fe(^{3+}), copper and iron transport</td>
<td>Anemia</td>
</tr>
<tr>
<td>Lysyl oxidase</td>
<td>X-linkages in connective tissue (collagen and elastin)</td>
<td>Aortic rupture, joint problems, in strength of bones</td>
</tr>
<tr>
<td>Copper-zinc superoxide dismutase (SOD)</td>
<td>Dismutation of O(_2) to H(_2)O(_2)</td>
<td>Antioxidation</td>
</tr>
<tr>
<td>Cytochrome c oxidase</td>
<td>Terminal electron transfer and function of central nervous system</td>
<td>Anorexia</td>
</tr>
<tr>
<td>Peptidylglycine (\alpha)-amidating monoxygenase</td>
<td>Elaboration of numerous biogenic molecules</td>
<td>Appetite</td>
</tr>
<tr>
<td>Dopamine (\beta) monoxygenase</td>
<td>Gatedeholamine metabolism</td>
<td>Depigmentation</td>
</tr>
<tr>
<td>Tyrosines</td>
<td>Tyrosinate to Melanin</td>
<td>Behaviour</td>
</tr>
</tbody>
</table>

Adopted from Underwood and Suttle [17].

Copper has an effect on the normal function of immune system in livestock. There are two types of immune cells which are used for defense against pathogens. When copper deficiency is present in animals then these immune cells are reduced, so responses to pathogens are reduced. The superoxide dismutase enzyme has an effect on phagocytes function in ruminants. Oxidative damage to phagocytes increases when there is a reduction in superoxide dismutase. The engulfing capability of phagocytes can be reduced due to hypocuprosis. When copper deficiency remains for 8 month period in cattle, superoxide dismutase activity is significantly reduced. This correlation between immune function, neutrophils function and copper superoxide dismutase shows the importance of copper in immune system in livestock [17]. Cu associated superoxide dismutase enzyme (SOD) has some functions in the reproductive system of dairy cattle and giving security to the developing and growth of oocyte during early pregnancy against oxidative damage [10,17].

Copper is vital micro element in the pigmentation of skin and hair in mammals. A Cu containing enzyme tyrosinase (enzyme required for the conversion of tyrosine to melanin) is important for the pathway by which pigmentation occurs. So, in copper deficiency, the concentration of tyrosinase is reduced and depigmentation in ruminants can be seen as an early sign of hypocuprosis in ruminants [17, 18]. A study stated that if maternal transfer of copper to the fetus is less for growth, then abnormalities occur in skeleton, metabolism and in central nervous system [22]. In neonate lambs, Cu deficiency can cause gross brain lesions. Unborn and weaned calves can develop enzootic ataxia due to hypocuprosis [23]. Copper is the vital microelement for the fetus for its normal growth [24].

A study shows the functional parts of copper and related enzymes focusing on clinical signs of hypocuprosis. These include degenerative arthritis, weakness, aortic break in cows, anemia, enzootic ataxia and copper’s immune function in battling disease. Variable factors influencing copper intake, absorption and metabolism influencing copper storage have been described. Copper dietary mineral associations are highlighted with interactions including iron-sulphur-copper, iron-copper, copper-molybdenum-sulphur, sulphur-copper and zinc-copper. The role of high iron intakes repressing copper storage is of specific significance to tropical environment and is discussed. Next, tissue Cu levels enzootic ataxia, goats and sheep blood copper levels and requirements for copper are put forward [25].

Clinical symptoms of copper deficiency include ataxia, paralysis, paresis, incoordination, head tremors, edema, twisted joints and weakness of limbs [26]. Copper deficiency mainly targets the immune system, CNS and hematopoietic system, connective tissue, bones and the cardiovascular system [27]. Hypocuprosis can be linked with a variety of clinical signs like low graded sheep wool, pale coat color, anemia, myocardial degeneration, poor reproduction rate, less resistance to infectious diseases and diarrhea [28]. A group researchers reported that weight loss, anemia, pale mucous membranes, enzootic ataxia, poor reproductive performance and soft bones can be linked with copper deficiency in cattle [29].

In domesticated animals, un-even bone development and feeble bones are due to copper deficiency which mostly happens during growth of animals. Seriously copper insufficient calves and sheep will show swelling or loosening of the end of leg bones, and bones will break (fragile bone) easily because of soft bone tissues. Reading at the centre point of the rib cage may likewise be found in Cu lacking sheep and calves because of the over development of the costrochondral junctions [17]. In Cu inadequate red deer, skeletal abnormalities have been reported. Clinical signs and symptoms show a skeletal variations e.g, carpal joints, the outward pivot of the rear leg, swollen hocks, and lameness [30].

3. PRIMARY AND SECONDARY COPPER DEFICIENCY

If copper deficiency is due to complete insufficiency in copper intake, then it is called primary copper deficiency. And if the less supply of copper to pastures is due to some interfering factors then it is called secondary copper deficiency. When copper to molybdenum ratio is 5 to 1 to 10 to 1, cattle perform normally. So, secondary Cu deficiency results due to the excess amount of molybdenum in the presence of sulphur. As thiomolybdate complex is formed it is poorly absorbed from intestine [31]. In cows, scouring or diarrhea is more observable than in sheep as the excreta is for the most part more liquid [17]. Looseess of the bowels in cows is caused by high molybdenum (molybdenosis) levels in the blood. The Mo over-abundance causes a Cu insufficiency [32]. Within 12 hour, dairy cows with extreme diarrhea will react to copper treatment [8,17]. Animals may intake high level of Fe due to soil ingestion or high Fe level in drinking water and high level of Fe in pasture. Fe has been found as antagonist to lower the Cu status of both cow and sheep [33]. Ruminants...
may develop signs of copper deficiency (hypocuprosis) in cases where the Cu level >10ppm. This is occurs when copper antagonists are high in ingested diet. The minerals which antagonize Cu are molybdenum (Mo), sulphur (S) and iron (Fe) [34].

Copper supplementation is used in crop and fruits (especially in citrus fruits) production to control different bacterial and fungal disease in Pakistan. In Pakistani soil, availability of micronutrients is very poor. Soil in Pakistan are predominantly calcareous and alkaline. High pH and calcareous soil are responsible for the low availability of the micronutrient. Copper status is 20 to 100 mg/kg (average is 30 to 40 mg/kg), molybdenum 0.2 to 5 mg/kg and sulphur status is 60 to 75 mg/kg in Pakistan soil (www.nfsc.gov.pk).

In northern irrigated zone of Punjab, out of 15 districts, Cu deficiency in blood was reported only in district Sialkot. In southern irrigated zone, no data were available on Cu deficiency. In arid zone, Cu deficiency in animal blood was reported only in district Jhang [35-39]. Estimated dietary copper requirement is 72.6 mg/day and dietary copper concentration is 12 mg/kg diet in 300kg heifer [40].

4. NORMAL SERUM COPPER LEVEL IN DAIRY COWS AND BUFFALOES

Some researchers reviewed 9 previous studies reporting serum Cu and Zn levels in dairy cows [41]. The reference Cu values ranged from 5.2 to 39 µmol/L. They further contended that the recommended reference values in bovine serum that reflect at least a sufficient dietary supply of Cu and Zn are 8 to 19 µmol/L for both of these trace minerals. The serum Cu level of healthy buffaloes 118.4 ± 5.2 µg/dl [42].

5. COPPER RELATED STUDIES IN PAKISTANI LIVESTOCK

A scanning of available literature indicated that a very little research work has been done thus far on copper status and deficiency in Pakistani livestock. A study focusing on infertility and disease surveillance in district Sahiwal revealed that deficiency of phosphorus and Cu is widespread in this district and that the low reproductive efficiency of cattle and buffaloes is due to deficiencies of these two minerals along with low level of feeding and poor management [43]. Forages accessible at livestock farm Khizerabad, Sargodha, Pakistan were found to be deficient in copper, cobalt and zinc [39]. Deficiencies of Cu, Co, Zn and Se either singly or in combination were responsible for anestrous in dairy buffaloes managed at Buffalo Research Institute, Pattoki, district Kasur, Pakistan [44].

A group researchers reported a marginal deficiency of copper during summer in the sera of lactating goats sampled from district Layyah of Southern Punjab, Pakistan [45]. A research study conducted in urban and peri urban areas of Faisalabad, Pakistan, reported that the combined therapy of ZnSO₄, CuSO₄ and enrofloxacin was better compared to as alone treatment with CuSO₄ and ZnSO₄ for sub-clinically mastitic buffaloes [46]. Abbas surveyed copper deficiency related chronic diarrhea in cattle and buffaloes in urban and peri urban areas of Faisalabad, Pakistan [47]. He selected 384 buffaloes and cattle with unknown prevalence. In the study areas, he collected blood samples from animals which were suffering from chronic diarrhea. Serum copper level was determined by atomic absorption spectrometry. It was concluded 89% of cattle and buffaloes in this area were deficient in Cu.

A Pakistani study on parturient hemoglobinuria of dairy buffaloes reported that diseased buffaloes had significantly (P<0.001) lower levels (65.4 ± 6.0 µg/dl) of serum copper as compared to serum copper levels (118.4 ± 5.2 µg/dl) of healthy buffaloes [42]. Hussain reported low serum copper level (0.584±0.114 mg/dl) in 25 dairy buffaloes affected with nutritional hemoglobinuria [48]. The serum copper level is unaffected dairy buffaloes was 0.650±0.071 mg/dl. Other researchers successfully treated leukodema affected buffalos with copper sulphate [49].

A study was conducted to determine the micro mineral status of pastures having high population of ruminants in Punjab, Pakistan. Soil and forages samples were collected for two seasons [50]. It was discovered that sampling period influenced soil Cu, Zn and Se while all forage minerals except Se were influenced by sampling times. Seasonal impacts were seen in soil Fe, Mn and Se, and forages Cu, Fe, Zn, Mn and Se. All soil mineral levels with the exception of Co and Se were observed to be over the critical levels and liable to be satisfactory for normal development of plants developing in that, though soil Co and Se were in extreme insufficient levels during the two seasons for the normal plant growth. The levels of Fe, Zn, Co, and Se in soil were higher, while those of Cu and Mn were bring down during winter season than those during summer season. Forages contained marginal inadequate level of Co during winter season, those of Cu and Se during the summer season. Moderate deficient levels of Fe and extreme lacking level of Zn, Mn and Co were found during the summer season. Forages Co, Fe, Zn, Mn and Se during winter season were observed to be satisfactory for the needs of ruminants. Thus, grazing animals at this area require continuous mineral supplementation of these elements to prevent infections caused by supplement inadequacy, and to help ideal animal productivity.

Some researchers has been reported the concentrations of some vital micro elements (Mg, Cu and Zn) in soil, forage and blood plasma of grazing sheep and goats in two fields (managed pastures and unmanaged pastures) in the South Western Punjab, Pakistan during two consecutive seasons of the year [51]. In light of the data acquired from soil, field forages and plasma it is conceivable that low levels of copper and zinc in soil and forage could potentially restrict ruminant production. It is concluded that mineral supplement may constantly be given to the grazing animals to upgrade the mineral status for boosting the production potential of animals at this region.

A study was carried out to determine the concentration of certain vital elements like Zn, Mg and Cu in soil and forages from two different areas in the field in Sargodha, Pakistan during two consecutive periods of the year [52]. The objective of this investigation was to assess the concentration of vital micro elements like Zn, Mg and Cu in soil and forages in connection to the requirements of animals grazing in that area. In light of these discoveries, it was concluded that field soil should be altered with copper and zinc containing fertilizers and the ruminants feeding on these forages should be constantly supplemented with particularly custom-made mineral mixture containing these elements to stay away from diseases caused by the deficiency of these mineral elements.

REFERENCES


